# STEELMASTER 2021



XXIV Edizione (Corso on-line)

#### 1ª Settimana

25-29 Ottobre 2021

#### 2ª Settimana

22-26 Novembre 2021



NoStickRolls Project Overview

N.Zacchetti, Rina Consulting – CSM S.p.A.

<u>Nicoletta.zacchetti@rina.org</u>



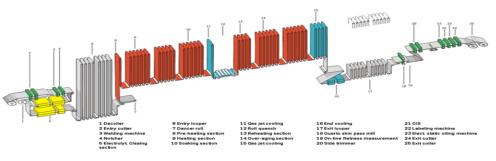
#### **NoStickRolls Project**

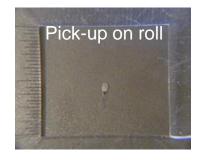
**No**n-**Stick**ing Furnace **Rolls** for steel products to improve service life and product quality in CAL & CGL (**NoStickRolls**) is a Research Project funded by the EU Research Fund for Coal and Steel programme (Grant agreement N° 754144)

**Scope of the Project**: extend the service life of furnace rolls working in CAL & CGL and to improve the steel strip's quality towards wear and pick-ups defects.

The pick-up formation issue has become more critical with the automotive industry demands for the development of ever more high-strength, high-ductility steel grades characterized by high Mn and Si contents and when adopting higher line speeds needed to increase the productivity.




### NoStickRolls Project: Industrial issue




What are Pick-ups?



Matter from steel strips (oxides or Fe dust particles) that sticks and accumulates forming a lump on rolls working in vertical and horizontal continuous annealing furnaces. They form due to **mechanical and/or chemical interactions.** 







What do Pickups cause?



Scratching or denting the steel strip effecting the product quality

Increase the shutdowns for machining/replacing coated rolls

## NoStickRolls Project: Industrial issue



According to roll's position in the furnace, the pick-up type and formation mechanism is different

The furnace atmosphere is reducing:  $2 \div 7\% H_2/N_2$  with a dew point of -50°C  $\div$  -20°C.

Heating & soaking zones: 750 ÷ 850°C

Oxide pick-ups: spinels (i.e., MnAl<sub>2</sub>O<sub>4</sub>, Mn<sub>1.5</sub>Cr<sub>1.5</sub>O<sub>4</sub>, ) formed by the **chemical reaction** between the selective oxidation of alloying elements on steel strips (MnO, SiO<sub>2</sub>,) and the surface oxide layer on roll coatings (Cr<sub>2</sub>O<sub>3</sub> and/or Al<sub>2</sub>O<sub>3</sub>).

Cooling & overageing zones: < 500°C

- Fe pick-ups: are related to **mechanical slippage** due to roll/strip speed mismatch. Debris from the strip sticks on the roll's surface and starts to build-up.
- SiO<sub>2</sub> pick-ups when electrical steels are processed on CAL.

## NoStickRolls Project: currently used coatings



Currently used Coatings



Thermal spray cermet coatings for furnace rolls working in CAL & CGL:

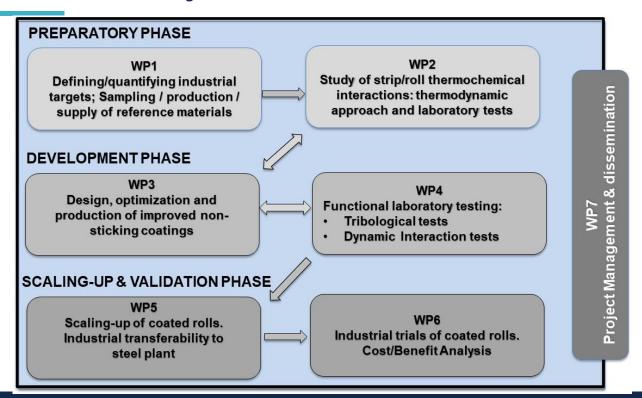
- ✓ blends of Cr<sub>3</sub>C<sub>2</sub> and NiCr;
- ✓ carbides or/and oxides in MCrAIY

Required
Coating
Properties



- / high hardness and wear resistance
- ✓ thermal shock resistance
- pick-up resistance
- ✓ sufficient surface roughness to avoid strip meandering.




### **NoStickRolls Project Objectives**



- To acquire knowledge on the interactions occurring between materials in contact (rolls/steel strip) as a function of <u>process variables</u> (temperature, dew point, etc.) that can affect pick-up formation, and on trends of <u>coating features</u> (composition, surface roughness, etc.) that promote or inhibit mechanical and/or chemical interactions.
- To design and develop improved coating solutions using a combination of new material composition (or new for the application) and advanced and new in the field deposition techniques able to tailor the required coating's properties;
- To test and compare wear and pick-up resistance behaviour of different coating solutions respect to currently used ones by tribology tests and in-house developed test-bench facilities able to reproduce pick-ups at different temperatures;
- To scale-up and validate the most promising coatings compared to currently used ones by semi-industrial Roll-Strip-Interaction trials and by industrial trials in CAL & CGL.

#### **NoStickRolls Project Structure**





#### **NoStickRolls Project Presentations**



Interaction phenomena and pick-up formation mechanism on furnace roll coatings

Louis Bordignon, CRM

Anti-pick-up Coatings for furnace rolls in CALs & CGLs Stefano Lionetti, Nicoletta Zacchetti, RINA

Study of wear and pick-up resistance properties of coatings by laboratory and pilot plant facilities Jessica Schindhelm, Tuncer Uemit, Emaunel Tienpont, BFI

Production of coatings for industrial and semi-industrial trials Andrea Chierichetti, Flame Spray; Tiberius Vilics, LWK PlasmaCeramic

Industrial Trials for Coating's Validation
Marc Blumenau, tkSE; Jean Michel Arbiol, AMS

#### **NoStickRolls Project Conclusions**



To suppress the formation of very adherent Fe pick-ups on rolls in the overageing zone, a WC-CrC-Ni cermet powder deposited by HVAF is proposed.

It is new for this application and is expected to have improved response to longterm in-service exposure compared to currently used cermet coatings.

- It has appropriate hardness
- It inhibits sintering phenomena as the metal binder is low (7 wt%).
- Its thermal shock resistance at < 500°C is sufficiently good</p>
- it has a Co free matrix that complies with the latest REACH regulations.
- The surface roughness should be Ra 3.0 3.5 μm being a compromise to ensure a good strip quality but have some roughness to avoid strip sliding onto the rotating roll.

#### **NoStickRolls Project Conclusions**



The following coating solutions are proposed to avoid the formation of sticky Mn-rich spinel pick-ups on rolls in the <u>soaking zone</u>:

- Cermet coatings having no or a limited amount of Al and Cr in the Ni/Co based binder.
- Cermet coatings submitted to a plasma nitriding process aimed to transform Cr and CrC into CrN hard phases.
- Hard ceramic coatings that don't react with MnO.

The semi-industrial RSI tests carried out at 850°C in  $H_2/N_2$  atmosphere with HSS strip showed significantly less pick-ups on the as-coated area of the nitrided  $Cr_3C_2$ -NiCr coating  $\rightarrow$  hardening process has an effect in limiting pick-up formation.

No pick-ups were detected on the smoother area of nitrided Cr<sub>3</sub>C<sub>2</sub>-NiCr and Al<sub>2</sub>O<sub>3</sub>-TiO<sub>2</sub> coatings. Roughness seems to have an important effect on pick-up formation.

#### Steelmaster

è una iniziativa sostenuta da









